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AbstracL We propose the possibility of soliton-type pulse propagation in an optical guide 
with two-level resonant impurities and high-order effects like: higher-order dispersion, self- 
steepening, stimulated Raman scaltering and stimulated BriUouin scattering. To establish the 
above results we apply the Painlev6 singularity structure analysis and find that the system of 
equations admits the Painlev6 pmpeay only for certain values of the physical parameters involved 
in the system. The Lax pair of the system equation is explicitly shown. As the system without 
resonant impurities admits solitons, this system is also expected to admit the remarkable solitons 
.PpeflY. 

In an optical-fibre communication system the major drawbacks are the optical losses and 
the pulse broadening due to dispersion 111. To avoid these problems repeaters are placed 
at regular intervals so that the optical pulses can be reshaped and can be sent without any 
losses or cross talk. When the distance through which the pulse has to be transmitted is 
increased the system using repeaters seems to be clumsy and costly. The other way of 
avoiding this problem is the transmission of soliton pulses. Soliton pulses will not change 
shape or width in the course of its propagation. This is due to the balance between the 
dispersion and the nonlinear effect in the form of self-phase modulation [ZJ. 

To avoid the problem of optical losses the resonant impurities like erbium atoms are 
doped to the fibre core. This doping will make the fibre appear to be transparent to the 
particular wavelength at which the soliton pulse is propagated. This effect is called the self- 
induced transparency (SIT). In addition to these effects, higher-order effects l i e  higher-order 
dispersion, self-steepening and stimulated inelastic scattering will also appear in the fibre. 
So, the exact practical case of the pulse propagation in an erbium-doped nonlinear fibre 
with higher-order effects is governed by the coupled system of the higher-order nonlinear 
Schrijdinger ( m s )  equation and the Maxwell-Bloch (MB) equations. The main aim of this 
paper is to show the possibility for soliton-type pulse propagation in the coupled system of 
HNLS-MB equations for the first time. 

Self-phase modulation (sPM) is one of the nonlinear effects which occur in a fibre due 
to the Kerr effect [2]. Ken effect can be easily induced in the fibre when the intensity of 
the pulse is far above a certain threshold value. SPM will produce additional side bands in 
the frequency component of the pulse. In the negative dispersion regime the effect of SPM 
is of an opposing nature to that of the dispersion. So, the balance between them will make 
the pulse travel like solitons. The system equation is governed by the well known nonlinear 
Schrodinger equation (NU) which is of the form 

(1) 
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where E is the slowly varying field and the subscripts denotes the partial derivatives. The 
single soliton of equation (1) is given by [2] 
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E = sech(t) exp(iz/2). (2) 

According to theory if a pulse of the shape given by equation (2) is transmitted then 
the pulse will travel as a soliton. However, in practice [3] other problems are faced due to 
the omission of the higher-order effects in the equation. 

Hasegawa [4] has shown that the omitted terms include effects like higher-order 
dispersion, self-steepening and stimulated inelastic scattering. The above effects are also 
present within the specmm of the soliton pulse. Including all the effects the equation 
aPP- as 

(3 )  

where 01, ,B and y represent the coefficients related to higher-order dispersion, self-steepening 
and stimulated inelastic scattering respectively. The presence of higher-order terms have 
their own physical significance. 

The higher-order dispersion effect which is included as the third time derivative of the 
field also causes the pulse to spread. The other higher-order terms are the nonlinear effects, 
namely self-steepening and the stimulated inelastic scattering which includes the stimulated 
Raman scattering (SRS) and the stimulated Brillouin scattering (SBS). Self-steepening will 
give the pulse a very narrow width in the course of the propagation. This is mainly due 
to the intensity dependence of the group velocity (us = Ilk') ,  where k is the wavenumber. 
So, the peak of the pulse will travel slower than the wings. The SRS and SBS effects will 
force the pulse to undergo a frequency shift. This is called the self-frequency shift of the 
soliton pulse. 

So far in the discussion we have not considered the effect due to optical losses. In 
practice two methods are widely adopted to overcome the problem of attenuation in the 
fibre. One of the methods is the Raman amplification which is found to be reasonable for 
this purpose. We still need a periodic coherent light system to give the pump pulses for 
the amplification and another drawback of Raman amplification is that it is also a nonlinear 
process; this means that it needs a very high intensity beam. Another method to overcome 
this problem is by the utilization of fibres doped with two-level resonant impurities like 
erbium atoms. 

Consider a non-dispersive, two-level resonant impurity-doped linear dielectric light 
guide. The pulse propagation in this system is governed by the MB equations [ S I .  The 
M B  equations have the smcture 

ET = iorl[iErr + I E I Z E l - ~ [ a E r r r  +BlE12Er'+yE(IEIZ)rI 

, 

Ez = (P) 
p t  = 2iop + 2Eq (4) 

= -(Ep* + E*p)  

where p .  q are given by ulu; and Iu1IZ - Iuz[2 respectively. Here UI and vz are the 
wavefunctions of the two energy levels of the doped impurities. The bracketed term (. . .) 
is the averaging function over the entire frequency range: 

m m 

( P ( z ,  f ;  0)) = 1, P(Z .  f; o)g(o) d o  g(o)do = 1. (5)  
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The pulse propagation in the MB equations is also found to be a soliton-type pulse 
propagation [6 ] .  The presence of the resonant atom makes the system transparent to the 
particular wavelength of the pulse. So, the system becomes transparent to pulse propagation 
induced by the pulse itself and, hence, it is called SIT. 

If a fibre doped with erbium is considered, the system equation for the more general 
case will be the coupled system of the HNLS equation and MB equations. The possibility 
of the co-existence of SIT +nd NLS solitons is discussed in many references r-111. When 
effects like higher-order dispersion and self-steepening are included then the NLS equations 
will be replaced by Hirota’s equation. In [12] we proposed a coupled system of Hirota’s 
equation and the MB equations; the single-soliton solution is also explicitly shown. Here 
we propose, for the first time, a coupled system of the HNLs equation and the MB equations. 
Hereafter we refer to this system as the HNLSMB system. The HNLS-MB system is found to 
have the form 

We now have to check the integrability condition of the HNLS-MB equations; the Painlev6 
analysis [13,14] of equation (6) has been carried out. For convenience, the function g(o) 
in equation (5) is considered as a Dirac delta function at the resonant frequency.so that the 
averaging function ( p )  in equation (6 )  will be replaced by p itself. Also, the independent 
variables z and t are interchanged. So, the set of HNLS-MB equations whose Painlev6 
analysis is going to be analysed is: 

As E and P are complex and q is real for the analysis, let us express E = a,  E” = b, 
p = c, p* = d and r j  = e ,  to give 

The generalized Laurent expansions of a, . . . , e are 
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with Q, . . . , eo # 0, where I ,  m, n, o and q are negative integers and aj,  . . . , ej and 01 
are the set of expansion coefficients which are analytic in the neighbourhood of the non- 
characteristic singular manifold q ( z ,  t )  = z + + ( t )  = 0. Looking at the leading order, we 
substitute a = aoq , . . . , e = eo@ in equation ( P ) ,  and on balancing the dominant terms we 
obtain 

1 

l = m = - 1  n = o = q aobo = -1 boco =@do. (10) 

Substituting the full expansion of the Laurent series and keeping the leading-order terms 
only, we obtain 

I A Ba? 0 0 0 1  

0 -2e0 0 ( j + n )  -2bo I 
bo Q ( j + n )  

where A = a ( j  - l ) ( j  - 2)G - 3) + ( j  - 1)(B + y)aobo - (B + 3y)aobo and B = 
( j  - 1) - (B + y ) .  Substituting equation (10) into equation (11) and solving the determinant, 
the resonance values are found to be 

From this careful analysis we find that equation (12) admits a sufficient number of 
positive resonances when n = -2 and for the condition 3a = p = 2y only; this gives 
emphasis to the fact that equation (8) is non-integrable for other values of a, p and y. 
Substituting the values of n, a, B and y ,  the resonance values are found to be 

j = - 1 . 0 , 0 , 2 , 2 , 3 , 4 , 4 , 4 .  (13) 

As usual, the resonance value at j = -1 corresponds to the arbitrariness of the 
singularity manifold (0, and j = 0, 0 implies that a0 or bo. and CO or do are arbitrary which 
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is evident from equation (IO). Similarly, from the coefficients of (q3, q3, q r 2 ,  rp-* 3 r p  -2 ) 
we obtain 

E b o ( B f 3 ~ )  & a o ( B + ~ )  0 0 0 ai -ia(l +@bo) 
Ebo(B+y) E Q ( B + ~ Y )  0 0 0 

0 1 0 (14) 

k o ]  [ i] = [ 2eo 0 1 2bo 
CO bo -1 

Solving equation (14), the values of al, . . . , el are found to be 

a1 = -ia(l + aobo)/(2boy) 

b1 = ia(l+ aobo)/(koy) 
c1 = 2iaoeo 

d1 = -2iboeo 

el = Zi(bOc0 - aoa3/3 = 0. 

Similarly, we also obtain the matrix for az, . . . , e2 as 

2Eymbo &sa," 0 0 0 uz D 
Ej3b; 2 ~ y ~ o b o  0 0 0 0 0 ko] 0 [:I=[ iz:;?] (16) 

CO bo 00 0 -aid1 - blcl 
2eo 0 0 2bo 

where 

D = -a0~~-ial(2aoboal+a,2bl)-~Baoalbl -~y(aoalbl  +a~bo)-2azco 

and 

F = - b  oJrr +iw(kobobl +b&d-EBboblal -Ey(boblat fbl5)-201Zd0. 

Equation (16) reveals that there are two sources of arbitrariness, corresponding to the 
resonances j = 2,2. From the remaining powers of rp we find that equation (8) admits a 
sufficient number of arbihary functions for 3a = p = 2y only. Hence, we conclude that 
equations (6) are expected to be integrable for the above choice of parameters only. The 
integrable version of equation (6) takes the form 

E< = imi[iEtt + IEIZEI - &[Etit +31EI2Er + qE(IEI2)tl +%ZP 

pf = 2iop + 2Eq (17) 
7: = -(EP* + E*P). 

As system (17) admits the Painlev6 property we believe that one can also establish 
the integrability for the general case, i.e. with ( p ) ,  and conshuct an auto Bkicklund 
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transformation, Lax pair and soliton solutions by truncating the Laurent series at the 
constant-level terms: 
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However, it should be noted that because of the complicated mathematical structure of 
the system equations it is very difficult to construct the Lax pair from the Painlev6 analysis 
point of view. Based on the earlier investigations, we are now able to construct the Lax 
pair of the HNLS-MB equations. The linear eigenvalue problem of the system equation is 
found to be 

[El2 (Ee-ie)2 (Ee-"), 

(E*e'e)x (Ee-"), -2IEI' 
]ElZ (E* 

0 0 (Ee-iO)x,, 
- E (  0 0 (E*e$), 

-(E*ei8)xx -(Ee-'B), 0 

0 
+ iorz/(A - io) 0 -,, ,*$S (" -,*$e 0 

Here 0 = (1/6&)[z - (f/l8&)], x = z - (f/12&) and A is the spectral parameter. The 
consistency condition U, - V, + [U, VI = 0 leads to equation (17) with appropriate co- 
ordinate transformations. 

The Lax pair of equation (17) confirm its complete integrability. As the HNLS-MB 
equations without the MB part have the soliton solutions given in [15], we expect the 
same type of soliton solution and also the splitting of the initial one-soliton pulse shape 
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for certain parameters. (For further details of the HNLS soliton see [15].) The system 
equation is found to be integrable for the condition derived from the Painlev6 analysis 
only; a similai condition also prevails for the HNLS equation [15]. This is because of the 
balancing between the physical parameters a (higher-order dispersion), ,5’ (self-steepening) 
and y (stimulated inelastic scattering) and the erbium-doped fibre support soliton-type pulse 
propagation, with the balancing between the pulse-spread due to higher-order dispersion, 
and the spectral spreading due to the self-steepening and the stimulated inelastic scattering. 
It is an interesting problem to show the above behaviours for system (17) and to see the 
possible experimental evidence; at present we are investigating these aspects and the results 
will be given elsewhere. 

Thus, in this paper we have proposed a new type of coupled higher-order nonlinear 
Schrodinger equation with the Maxwell-Bloch equations, which describes the wave 
dynamics of the erbium-doped fibre with higher-order nonlinear effects. The proposed 
system equation is found to allow soliton-type propagation for certain conditions between 
the parameters involving the higher-order dispersion, self-steepening and the stimulated 
inelastic scattering only. The Lax pair of the HNLS-MB equations is explicitly shown. 
So, we conclude that the erbium-doped nonlinear fibre with higher-order nonlinear effects 
support soliton-type propagation with the complete integrability of the system equation. 
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